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Abstract—Explainable reinforcement learning allows artificial
agents to explain their behavior in a human-like manner aiming
at non-expert end-users. An efficient alternative of creating expla-
nations is to use an introspection-based method that transforms
Q-values into probabilities of success used as the base to explain
the agent’s decision-making process. This approach has been
effectively used in episodic and discrete scenarios, however, to
compute the probability of success in non-episodic and more
complex environments has not been addressed yet. In this work,
we adapt the introspection method to be used in a non-episodic
task and try it in a continuous Atari game scenario solved
with the Rainbow algorithm. Our initial results show that the
probability of success can be computed directly from the Q-
values for all possible actions.

I. INTRODUCTION

Reinforcement learning (RL) [1] is a machine learning
technique in which an autonomous agent acquires a new skill
by interacting with the environment. Lately, the development
of deep learning methods, especially for image processing,
has allowed the emergence of deep RL methods [2]. Deep
RL combines the use of deep neural networks and RL tech-
niques [3]. In this approach, a deep learning architecture may
process raw images as inputs giving the value function as
output. Therefore, Q-values can be obtained directly from
unprocessed images that represent the state of the environment.

Empirical black-box models, as the case of deep RL, suffers
the lack of interpretation in terms of their parameters [4],
[5]. Therefore, it is not easy for a non-expert end-user to
understand the behavior of a deep RL agent in simple domain-
based language. In this paper, we implement an introspection-
based explainable method [6]. The method is based on a
mathematical transformation of the internal Q-values into
probabilities of completing the intended task. Therefore, the
deep RL agent needs to look into the internal values, and
no additional memory or processing is needed. We have
tested the introspection-based method in the Space Invaders
environment, an Atari game scenario.

II. DEEP INTROSPECTION-BASED APPROACH

Explanations from RL algorithms are useful to understand
better why an action was taken in a particular situation by
the agent. Our researched approach estimates the probability
of success P̂s directly from the Q-values as the introspective
knowledge of the agent’s self-motivation. This approach is
efficient due to the direct numerical transformation from the

Q-values into the probability of success and, therefore, no
additional memory is needed to compute P̂s. The Q-value
in a given state-action pair for value-based reinforcement
learning algorithms indicates how much future reward the
agent may obtain. Hence, using the Q-values, we can compute
the probability of success P̂s as follows:

P̂s ≈
1

2
· log10

Q(s, a)

RS
+ 1, (1)

where Q(s, a) is the Q-value and RS the maximal reward
obtained in any step. As a probability value, we limited
P̂s ∈ [0, 1]. In order to compute the probability of success,
in this work, we adapted Eq. (1) from [6] to be used in non-
episodic scenarios. Therefore, we use the maximal possible
reward obtained in any step RS instead of the maximal total
reward RT as per episodic tasks.

The introspection approach is used along with the Rainbow
deep RL algorithm [7], which integrates previous deep RL
methods such as double Q-learning, prioritized replay, dueling
networks, multi-step learning, distributional RL, and noisy nets
including recommended parameters.

The network used as approximation function present a
dueling network architecture from [8] and adapted as [7] with
a shared representation fξ(s), which is fed into a value stream
vη with Natoms and into and advantage stream aξ, formulated
as follows:

piθ(s, a) =
exp(viη(φ) + aiψ(φ, a)− āiψ(s))∑
j exp(vjη(φ) + ajψ(φ, a)− ājψ(s))

, (2)

where φ = fξ(s) and āiψ = 1
Nactions

∑
a′ a

i
ψ(φ, a′). Addi-

tionally, it replaces all the linear layers with noisy layers
equivalents as presented in [9] and adapted in [7].

III. EXPERIMENTAL SCENARIO

Our approach has been tested in the Space Invaders Atari
game environment. The state space is composed of an RGB
image with 210x160 pixels which is resized to 84x84 and
converted to grayscale. Additionally, 4 consecutive frames
were stacked to emulate a spatio-temporal analysis according
to the suggested by a DQN previous implementation [10].
The actions are in discrete domain, configured by 6 possible
choices ∈ [0, 5] with the following meaning, 0: do nothing or



(a) Initial state. (b) Extra alien ship.

Fig. 1. Original observation for the Space Invaders arcade environment.

no operation; 1: fire; 2: move to the right; 3: move to the left;
4: action 2 plus 1; and 5: action 3 plus 1.

In this scenario, the agent must destroy a swarm of alien
ships with three lives, i.e., it can receive a maximum of three
alien bullets. The agent starts at the bottom-left part of the
frame as illustrated in Figure 1(a) and must shoot to the
alien swarm. The reward obtained depends on the alien ship
destroyed and its position in the swarm. It starts from 5 points
for ships at the bottom row with an increment of 5 points for
ships each row up, until 30 points for ships at the top row.
Additionally, an extra alien ship appears randomly in the top
part of the frame with a reward of 200 points, as shown in
Figure 1(b).

The agent was trained under 50 million steps in total
using the Rainbow algorithm [7] with all the recommended
parameters. The agent was evaluated for each 1 million steps
to check learning performance, and, therefore, the training
process was split into 50 episodes. Episode 0 was used to fill
the prioritized replay memory with 80 thousand steps before
starting the learning process.

IV. DISCUSSION AND FUTURE WORK

After 50 epochs of training for 9 agents, all the agents were
able to fulfill the task of destroying the swarm. In Figure 2(a)
can be observed that the agents during evaluation are able
to get a high average reward, destroying at least one time
the alien swarm, which summarizes 630 points. In the last
episode (i.e., the last 1 million training steps), the average Q-
values for all action varied between 6.85 and 7.15, which is
meaningless to explain the agent behavior. Therefore, using
the introspection-based method as shown in Eq. (1), we have
obtained the probabilities of success from the initial state.
Figure 2(b) shows the probability for each action during the
last episode with values from 0.678 to 0.688. As pointed out
previously, these probabilities may be used as the base to
explain the agent behavior more naturally to non-experts and
provide a number easy to interpret than raw Q-values.

However, the computed probabilities are not so different
among them as expected, and therefore, it may be difficult to
use them to generate counterfactual explanations. We hypoth-
esize that this minor difference may be came from that in this
complex scenario, a sequence of actions to complete the task
may be elicited starting from any action.
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Fig. 2. Reward and probability of success from the initial state after training.

Although the probability of success might provide a more
understandable manner to explain the agent behavior [6], it is
still not clear to what extent. Therefore, future work considers
a user study to understand better if the probability of success
is a valid metric to use as a base for explainable reinforcement
learning. This is especially relevant in complex scenarios in
which the impact of an action, in terms of the intended goal,
may not be clear easily by non-expert end-users.
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