
Towards Interpretable Reinforcement Learning
with Constrained Normalizing Flow Policies

Finn Rietz1†, Erik Schaffernicht1, Stefan Heinrich2, and Johannes A. Stork1

Abstract— Reinforcement learning policies are typically rep-
resented by black-box neural networks, which are non-
interpretable and not well-suited for safety-critical domains. To
address both of these issues, we propose constrained normaliz-
ing flow policies as interpretable and safe-by-construction policy
models. We achieve safety for reinforcement learning problems
with instantaneous safety constraints, for which we can exploit
domain knowledge by analytically constructing a normalizing
flow that ensures constraint satisfaction. The normalizing flow
corresponds to an interpretable sequence of transformations
on action samples, each ensuring alignment with respect to a
particular constraint. Our experiments reveal benefits beyond
interpretability in an easier learning objective and maintained
constraint satisfaction throughout the entire learning process.
Our approach leverages constraints over reward engineering
while offering enhanced interpretability, safety, and direct
means of providing domain knowledge to the agent without
relying on complex reward functions.

I. INTRODUCTION

The trial-and-error nature of Reinforcement Learning (RL)
algorithms and the black-box-like characteristic of mono-
lithic neural network policies results in agents that are unin-
terpretable and poorly suited for safety-critical applications,
especially those involving human participation. To account
for the safety of RL agents, constrained RL methods [1, 2,
3, 4] aim to obtain an agent that respects a set of (safety-)
constraints. However, these methods typically require access
to the transition dynamics of the environment or only obtain
an approximately safe agent in the limit, that executes
unsafe actions during training and exploration, to learn which
actions violate the constraints. Furthermore, constrained RL
methods still acquire monolithic neural network policies
that hinder verification and interpretation of the learned
behaviour, despite these being crucial requirements in safety-
critical domains and when interacting with humans. Reward
or task decomposition agents [5, 6, 7], on the other hand,
are interpretable, since their modular structure allows for
inspection and verification of separate components in the
agent.

Therefore, to jointly increase the safety and interpretability
of RL agents, we propose a modular and interpretable
policy model that respects constraints even during learning
and without requiring access to a complete model of the
environment. Our method builds on recent normalizing flow

1Adaptive Interpretable Learning Systems, Örebro University, Sweden
2IT University of Copenhagen, Denmark
†Correspondance: finn.rietz@oru.se.
This work was partially supported by the Wallenberg AI, Autonomous

Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

Fig. 1: Our interpretable normalizing flow policy. Left:
Environment, the agent should reach the star while avoiding
dangerous obstacles and walls. Middle: A single flow step
maps the initially unbounded policy distribution into the
region satisfying the constraint (magenta rectangle), action
samples are plotted in red. Right: The final policy distribu-
tion has support only over the allowed region.

policies [8, 9], where a normalizing flow model is employed
to learn a complex, multi-modal policy distribution. We show
that by exploiting domain knowledge one can analytically
construct intermediate flow steps that correspond to partic-
ular (safety-) constraints. In such a setting, the flow-based
policy is generated through an interpretable sequence of
constraint-alignment steps. This is illustrated in Fig. 1 with
only one constraint due to spatial constraints, examples with
multiple constraints can be found on subsequent pages. We
refer to this model as a constrained normalizing flow policy
(CNFP).

II. BACKGROUND

We begin by formally defining the type of constrained RL
problems we wish to solve and provide the relevant methods
underlying our proposed approach.

A. Constrained Reinforcement Learning

Reinforcement learning problems are formalized as
Markov Decision Processes (MDP)s. An MDP is a tuple
M ≡ ⟨S,A, r, ρ, γ⟩, where S and A respectively denote the
n- and m-dimensional state- and action-space, r : S×A → R
is the scalar-valued reward function, ρ : S ×A → S are the
discrete-time transition dynamics, and γ ∈ [0, 1] is a discount
factor. The goal in RL is to find a policy π : S ×A → [0, 1]
that maximizes the total expected return

J(π) = E(τ∼π)

[∞∑
t=0

γtr(st,at)
]
, (1)

where st ∈ S and at ∈ A and (τ ∼ π) is shorthand for
denoting trajectories τ with actions sampled from the policy
and states samples from the MDP’s transition dynamics.

Constrained RL additionally assumes a number of constraints
c1, . . . , cK that limit policy search for Eq. (1). In this paper,
we consider instantaneous constraints [1], resulting in the
constrained optimization

max
π

J(π) s.t. ck(st,at) ≤ εk ∀k ∈ {1, . . . ,K},∀t, (2)

where εk is a pre-defined threshold for the constraint function
ck : S ×A → R.

A popular approach for solving such constrained RL
problems relies on Lagrangian relaxation, which introduces
Lagrange multipliers λ to make for an approximation of the
above constrained optimization. The Lagrangian relaxation
of Eq. (2) is given by

J(π, λ) = E(τ∼π)

[∞∑
t=0

γtr(st,at)−
K∑
k=1

λk
(
ck(st,at)−εk)

)]
.

(3)
Optimizing the objective in Eq. 3 with dual gradient descent,
as in [10, 11], results in an agent that approximately solves
Eq. (2). Other approaches to constrained RL involve pro-
jections, that learn to map actions into the allowed set [2,
12]. These methods often require an expensive optimization
step, e.g. Pham, De Magistris, and Tachibana [12] have
to solve a quadratic problem to map each action into the
safe set. Shielding approaches [4, 13, 14] ensure that only
allowed actions are executed, however, they require access
to the transition model or modify the environment directly to
enforce constraints. Importantly, solely rejecting actions that
violate constraints does not suffice, since this would lead to
biased gradient estimates [13, 15].

In this paper, we instead exploit the following, useful
property of instantaneous constraints, namely, the fact that
they separate the per-state action space into two sub-spaces:
As
φ,k, which contains all actions that satisfy constraint k

in state s and As
ψ,k, that contains the actions that violate

constraint k in state s. We define As
φ = As

φ,1 ∩ · · · ∩ As
φ,K

as the intersection of all allowed constraint regions for state
s. Therefore, instantaneous constraints can be used to induce
a new MDP Mφ [16, 17] that uses As

φ as per-state action-
space and leaves everything else as in the original MDP
M. Theoretically, Mφ can then be optimized with regular
RL algorithms that then satisfy the constraints, even during
learning, by construction. In practice, this requires sample
access to Aφ or a mapping from A to Aφ. In this work
we consider the former approach by exploiting mapping
functions for instantaneous constraints and show how they
can be integrated into Soft Actor-Critic (SAC) (or other
policy-gradient algorithms) by means of normalizing flow
policies.

B. Soft Actor-Critic

Soft Actor-Critic [18, 19] is a model-free RL algorithm
for MDPs with continuous state and action spaces. SAC
maximizes the following maximum-entropy objective [20],
which augments Eq. (1) with the policy’s entropy H =

Ea∼π(·|s)[− log π(a | s)],

JME(π) = E(at∼π),(st∼ρ)

[∞∑
t=0

γtr(st,at) + αH(π(· | st)
]
,

(4)
where α balances the entropy and the reward objective. SAC
learns an on-policy critic Q-function, Qθ, with parameter θ,
by optimizing for Bellman consistency

JQ(θ) = ED

[1
2

(
Qθ(st,at)−

(
r(st,at) + γVθ̄(st+1)

))2]
,

(5)
where st,at, and st+1 are sampled from a replay buffer D,
Vθ̄ = E(at+1∼π)[Qθ̄(st+1,at+1) − α log π(at | st))] is the
maximum-entropy on-policy state-value function, and θ̄ is
a target network [21] parameter. With respect to the actor,
SAC employs an infinite-support, unimodal Gaussian with
diagonal covariance and mean given by a policy network,
πϕ, which is parameterized by ϕ. The policy network update
makes use of the reparametrization trick and backpropagates
through the critic

Jπ(ϕ) = E(st∼D)

[
E(at∼πϕ)

[
α log πϕ(at | st)−Qθ(st,at)

]]
,

(6)
to increase the likelihood of actions that have high Q-values.
To bound the action space, SAC squashes the Gaussian
action samples with the hyperbolic tangent function to obtain
the final actor distribution, which is referred to as a squashed
Gaussian distribution. The density of the squashed Gaussian
can be obtained using the change of variables formula. Given
a random variable a, its density π(a | s), and an invertible
function f , the density of the transformed random variable
a′ = f(a) is given by

π(a′ | s) = π(a | s)
∣∣∣∣det ∂f−1

∂a′

∣∣∣∣ = π(a | s)
∣∣∣∣det ∂f∂a

∣∣∣∣−1

,

(7)
where f−1 is the inverse of the transformation f . Eq. (7)
is used to obtain the policy’s log-density in Eq. (5) and (6).
Importantly, while SAC uses the hyperbolic tangent for f
to bound the action space, the change of variables formula
allows for any invertible function. This prompts the key
idea behind our method: If we can express instantaneous
constraints in terms of invertible functions on A, we can
directly transform A into Aφ on a per-state basis and learn
optimal policies directly in Mφ. In the next section, we show
how this idea can be generalized to multiple constraints and
that the resulting distribution corresponds exactly to what is
known as a normalizing flow policy.

III. CONSTRAINED NORMALIZING FLOW POLICIES

Normalizing Flows (NFs) [8] are models for variational
inference that transform a simple, initial density (e.g. Gaus-
sians) into a complex posterior distribution by applying
a sequence of learned, invertible transformations to the
original density. A degenerate, one-step NF with only one
transformation f is referred to as a flow and the resulting
density is given by Eq. (7). In this sense, unmodified SAC
applies a one-step NF to obtain the density of the squashed

Gaussian distribution, which has no parametric form. A
proper NF refers to the composition of multiple (learned)
transformations on the random variable a, with aM =
fM (fM−1(. . . f(a)), in which case Eq. (7) is successively
applied to yield the (log-) density

log π(aM | s) = log π(a | s)−
M∑
m=1

log

∣∣∣∣det ∂fm
∂am−1

∣∣∣∣ . (8)

As shown in [8] NFs are highly flexible and can approximate
complex, multi-modal posterior distributions. By viewing
the squashed Gaussian distribution in SAC as the result
of single flow step, it is intuitive to replace the squashed
Gaussian with more expressive, multi-modal NFs. When
these transformations are learned, the resulting architecture
is referred to as a normalizing flow policy [9].

Normalizing flow policies are primarily used to obtain
more expressive policy distributions, which reportedly im-
proves exploration and learning efficiency [9, 22, 23]. We
find two related works investigating constrained RL problems
with the help of flow-based policies. Brahmanage, Ling, and
Kumar [24] also focus on RL problems with instantaneous
constraints, as in Eq. (2), and propose FlowPG to learn
an invertible mapping from A to Aφ, i.e. to map any
given action into the per-state allowed sub-space. FlowPG
requires a large dataset of actions in As

φ for each state s,
which the authors propose to obtain via an expensive, initial
Hamiltonian Monte-Carlo (HMC) [25] step. Chen et al. [26]
instead focus on feasibility constraints in large, discrete
action spaces and learn an Argmax Flow [27] network
that generates samples from the feasible, categorical action
distribution. To ensure that only allowed actions are executed,
the authors include a rejection sampling step that may fail
if the feasible set is small. The key difference between
previous works on constrained flow-based policies and our
method is that we, instead of learning the M transformations
from data, propose to construct the transformation functions
analytically, considering domain knowledge and constraint
functions. We describe our approach to this in the next
section.

IV. METHOD

In this paper, we consider RL problems with instantaneous
constraints, as in Eq. (2), with the constraints defined on
the MDPs state-action space. We propose to analytically
construct functions that map into the per-state, per-constrain
allowed action subspace As

φ,k. More formally, we assume
K instantaneous constraint functions c1(s,a), . . . , cK(s,a)
with corresponding thresholds ε1, . . . , εK , which induce
As
φ,1, . . . ,As

φ,K , the per-state s, per-constrain k allowed ac-
tion sub-spaces. We now make a relatively strong, simplify-
ing assumption: We assume that all As

φ,k are convex because
it is relatively easy to find invertible transformations that map
points into the convex sets. So far, we developed functions
for mapping or squashing into hypercubes, hyperspheres,
and ellipsoids (the former could correspond to percentiles
on learned Gaussians), but we hypothesize that there are

Fig. 2: Invertible mapping functions. Exemplary constraint
regions are drawn in orange . These functions map
from the unbounded domain into the constraint region, i.e.
f() → . The inverse function maps from the constraint
region back to the unbounded domain, i.e. f−1() → = .

invertible squashing functions for more complex polytopes.
Fig. 2 illustrates these invertible squashing functions in 2D.
While the exploration of non-convex, invertible squashing
functions is out of scope for this paper, we note that multiple
simple, convex constraints can be combined to induce a
complex, overall constraint on the agent.

To provide a concrete example of our method, consider
two constraint function c1(s,a) and c2(s,a) with corre-
sponding ε1, ε2, whose convex sub-spaces are As

φ,1 and As
φ,2

in each state s, and the corresponding invertible functions
f s
1 and f s

2 that respectively map points into As
φ,1 and

As
φ,2. By assuming that f s

1 and f s
2 are known (or can be

constructed), we can directly use these functions to construct
an interpretable, constrained NF policy by inserting them into
Eq. (8). The resulting NF policy will sequentially map the
initially unbounded action-space into the sub-space allowed
by the constraints, such that the final distribution only has
support over As

φ,1 ∩ As
φ,2, the intersection of all constraint

subsets. This is the core idea behind our method, which is
applicable to instantaneous constraints for which we know
or can analytically construct the mapping functions. The
consequences of this modelling can be seen in Fig. 3.
As shown, depending on the state and the constraint, the
squashing functions are restrictive or largely permissive.
The final policy distribution is obtained in an interpretable
manner since each transformation in the normalizing flow
aligns the policy with respect to one of the constraints. This
approach can trivially be extended to K > 2 constraints,
since simply the range of the summation in Eq. 8 increases
from 2 to K.

Note, that the order in which we apply our transformations
matters since the mapping functions are or can be non-linear,
meaning we have f s

1 (f
s
2 (a)) ̸= f s

2 (f
s
1 (a)). The normaliz-

ing flow generally maps into the intersection of As
φ,1 and

As
φ,2, however, the resulting distribution can look different,

depending on the order of transformations. This can be used
to impose a notion of priority on the constraints: For each
constraint l and the corresponding transformation fl that
comes before k in the flow sequence, the intermediate As

φ,l

will be mapped into As
φ,k by the subsequent transformation

Fig. 3: Two normalizing flows. Top: Permissive constraints,
no obstacles are in close proximity and the battery is fully
charged. Bottom: Restrictive constraints, the agent is close
to an obstacle and its battery is almost empty. The green
rectangle indicates a charging station.

fk which may not overlap with As
φ,l. This is a desirable

property because it ensures that even if constraints are
incompatible, i.e. when As

φ,1 ∩ As
φ,2 = ∅, our NF policy

will always map into the sub-space of the higher-priority
constraint, whose transformation is applied after that of the
lower-priority constraints.

The concrete steps of our method can be summarized as
follows: Given an RL problem with a set of instantaneous,
convex constraints c1(s,a) ≤ ε1, . . . , cK(s,a) ≤ εK , find
the corresponding invertible functions f1, . . . , fK that map
into Aφ,1, . . .Aφ,K . Next, order the constraints by domain-
specific priority, e.g. c1 ≻ · · · ≻ cK . Insert the constraint
mapping function into Eq. (8), such that the lowest-priority
constraint transformation fK is applied first and the highest
priority constraint transformation, f1 is applied last. Use the
resulting normalizing flow to compute the log-density of the
constrained NF policy, e.g. in Eq. (5) and Eq. (6) for SAC
or other policy-gradient algorithms. In the next section, we
demonstrate this approach in a simplistic 2D environment as
proof-of-concept.

V. EXPERIMENTS

A. Environment

We empirically validate our method on a constrained 2D
point navigation problem, where the agent has to reach a
target coordinate while constrained to avoiding obstacles
and keeping the battery charge above 20%. At each step,
the battery depletes by 1% but can be charged by visiting
a charging station, with one charging station placed at
each side of the rectangular environment. The outside walls
as well as a centrally-placed rectangle provide the static
obstacles the agent should avoid colliding with. The central
obstacle ensures that the direct path to the goal is obstructed,
such that an unconstrained agent will inquire high constraint
violations. The observation vector is in R5 and corresponds
to the agent’s current 2D coordinate, the current battery
level, and the 2D goal coordinate. Actions correspond to
translations in the 2D plane. The reward function is dense
and corresponds to the negative Euclidean distance between

the agent and the target coordinate, encouraging the agent to
greedily navigate towards the goal. When the agent reaches
the goal, a bonus of 10 reward is provided and a new goal
position is randomly sampled. There are no terminal states,
however, episodes are truncated and the environment resets
after 100 steps. The constraints are modelled as indicator
functions. The constraint for obstacle avoidance, IO(s,a)
maps to one if executing a in s would lead to a collision
with an obstacle. The constraint function for the battery level,
IB(s,a) maps to one if executing a in s leads to the bat-
tery falling beneath the 20% threshold. Both corresponding
constraint thresholds, εO, εB are set to 0.

B. Methods

For our constrained normalizing flow policy (CNFP), we
analytically construct the invertible functions f s

B , f
s
O for

mapping into As
φ,B and As

φ,O, i.e., the per-state action-
subspaces that keep the battery and obstacle-avoidance con-
straints satisfied. Due to the rectangular layout of the environ-
ment we model f s

O, the function for mapping into As
φ,O, with

the rectangle squashing function (right side of Fig. 2). The
dimensions of the rectangular constraint region are inferred
from the environment and the agent’s current position, just
like IO(s,a) itself. If the agent is sufficiently far from all
obstacles, this constraint simply bounds the action space to
[−1, 1], however, in closer proximity to the obstacle, the
bound becomes tighter and excludes those actions that would
lead to collisions. The battery constraint mapping function
f s
B is modelled with the circular squashing function (left

side of Fig. 2). If the battery level is sufficiently high,
the circle is zero-centred and has a large radius. As the
battery level decreases, the radius becomes smaller and the
circle is placed at the closest charging station. Thus, if the
battery level is low, the agent is automatically “pulled” to the
closest charging station. We define the priority order of these
constraints as IO ≻ IB , meaning avoiding obstacles is as-
signed higher priority than keeping the battery fully charged.
Our constrained normalizing flow policy thus corresponds to
a′ = f s

O(f
s
B(a ∼ π(· | s))).

In addition to our CNFP agent, we include the following
baselines. Firstly, we include an unconstrained SAC agent
that maximizes the reward function while disregarding the
constraints entirely. This agent provides a baseline for con-
straint violations caused when optimizing only the reward.
Next, we include a SAC agent where constraint violations
are punished via the reward function. For this agent, we
modify the dense reward function to yield a large negative
penalty, −100, whenever at least one of the two constraints
is violated. Behaving optimal with respect to this reward
function is equivalent to solving the task while respecting
the constraints. Lastly, we include a Sac-Lagrangian agent
that optimizes Eq. 3, as described in [10, 11].

C. Results

Our main result is shown in Fig. 4, with two main insights.
Firstly, our CNFP agent learns to solve the goal-navigation
task optimally within only a few episodes, as can be seen

Fig. 4: Baseline comparison in a constrained 2D point navigation environment. Left: Our agent (CNFP) learns the task as
quickly as the unconstrained agent since it optimizes the same, smooth and dense reward function while benefiting from
a reduced search space. Right: Unlike other baselines, our agent maintains quasi-perfect constraint satisfaction throughout
learning. The experiment was repeated three times with varying random seeds, the shaded area corresponds to one standard
deviation around the mean.

on the left side in Fig. 4. This can be explained by two
observations. On the one hand, CNFP optimizes the same
smooth and dense reward function as the unconstrained
baseline agent, which makes learning easy. This is not the
case for the reward penalty or Lagrangian agents. Although
the Lagrangian agent also optimizes the same smooth and
dense reward function as the unconstrained baseline and
CNFP, it also has to consider the constraint violations in the
actor objective, which results in a harder objective for policy
search. As a consequence, the Lagrangian agent converges
only slowly to near-optimal performance. For the reward
penalty agent, the reward function is still dense but it is not
smooth since it is dominated by the large penalties raised due
to constraint violations. This makes learning the task harder.
The reward penalty agent did therefore only learn to avoid
constraint-violating actions, but did not converge to an opti-
mal level of performance within the number of episodes of
this experiment. The quick convergence of our CNFP agent
to an optimal level of task return can further be explained
by a reduced search space. The behaviors accounting for the
obstacle avoidance and battery-level constraints do not have
to be learned, since we can exploit domain knowledge to
encode them into the agent via the transformation functions
f s
O and f s

B . No matter where the policy network places the
initial Gaussian N (µϕ,Σϕ) and which action is sampled, if
the agent is close to an obstacle, the sampled action (and
corresponding density) will be transformed by f s

O in such
a way that a collision is no longer possible (e.g. Fig. 1 and
Fig 3). The same is true for the battery constraint. Therefore,
our agent’s learning objective is solely the maximization of
task return, while the constraints are satisfied by construction
of the constrained normalizing flow policy and do not require
any plasticity in the policy network.

The second insight is that, as can be seen on the right
side of Fig. 4, our CNFP agent maintains quasi-perfect
constraint satisfaction throughout the entirety of training.
This is expected, since correct mapping functions f s

O and

f s
B should never allow constraint-violating actions to be ex-

ecuted. As revealed through the unconstrained agent, solving
the task optimally without accounting for constraints results
in many constraint-violating actions. Both the reward penalty
and the Lagrangian agent drastically decrease the number
of constraint violations throughout training, however, both
inquire a high number of violations at the beginning of
training. At the same time, for these agents, the reduc-
tion in constraint violations comes at a cost: The reward
penalty agent learns overly pessimistic behaviour which
indeed results in few violations, however, at the cost of
drastic performance degradation in terms of task return. The
Lagrangian agent converges to a similar level of constraint
violation as the reward penalty agent while achieving better
task return, although only reaching near-optimal performance
at the very end of training. Thus, to summarize the results
so far, our CNFP agent is the only one to maintain perfect
constraint satisfaction through training while achieving task
return levels as quickly as and on par with an unconstrained,
optimal agent.

Lastly, we want to highlight again the interpretable nature
of our model. Unlike all other baselines that learn a single,
monolithic policy, our CNFP policy is interpretable, since
each step in the normalizing flow can be visualized and
used to explain the agent’s behaviour. While the initial,
unbounded policy distribution is still obtained from a black-
box neural network, it can be explained how this distribution
is transformed to ensure that the agent respects the given
constraints. This can reveal flaws in the construction of the
constraint mapping functions, i.e. it can be seen when a
mapping function is to permissive and allows the execution
of unsafe actions. It can therefore be explained how an
unsafe action in particular state must be transformed to
ensure alignment w.r.t each constraint. This is not the case
for our baseline methods that learn monolithic policies with
constraints simply moved into the learning objective.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have shown how normalizing flows
can be used to obtain interpretable policies for constrained
reinforcement learning problems. Our experiments revealed a
favourable comparison against baselines with respect to task
return and constraint violations, with additional benefits in
and beyond interpretability: The action-space transformation
functions, which constitute the normalizing flow, make for a
form of knowledge transfer by encoding desired behaviour in
terms of constraints on the action space. Then, the constraints
do not have to be considered in the reward function and value
estimates, which leaves a simple optimization objective that
can be learned quickly. As the most important future work,
we see the development of non-convex transformation func-
tions, to broaden the applicability of our approach to more
complex scenarios, as well as the integration of learnable
mapping functions for complex constraints. In this context,
it might be worthwhile to explore differentiable constraint
functions, as in [13], which are susceptible to learning with
normalizing flows.

REFERENCES

[1] Yongshuai Liu, Avishai Halev, and Xin Liu. “Policy
learning with constraints in model-free reinforcement
learning: A survey”. In: The 30th international joint
conference on artificial intelligence (ijcai). 2021.

[2] Joshua Achiam et al. “Constrained policy optimiza-
tion”. In: International conference on machine learn-
ing. PMLR. 2017, pp. 22–31.

[3] Eitan Altman. Constrained Markov decision pro-
cesses. 1st Edition. Routledge, 1999.

[4] Mohammed Alshiekh et al. “Safe reinforcement learn-
ing via shielding”. In: Proceedings of the AAAI con-
ference on artificial intelligence. Vol. 32. 1. 2018.

[5] Stuart J Russell and Andrew Zimdars. “Q-
decomposition for reinforcement learning agents”. In:
Proceedings of the 20th International Conference on
Machine Learning (ICML-03). 2003, pp. 656–663.

[6] Zoe Juozapaitis et al. “Explainable reinforcement
learning via reward decomposition”. In: IJCAI/ECAI
Workshop on explainable artificial intelligence. 2019.

[7] Finn Rietz et al. “Hierarchical goals contextualize
local reward decomposition explanations”. In: Neural
Computing and Applications 35.23 (2023), pp. 16693–
16704.

[8] Danilo Rezende and Shakir Mohamed. “Variational
inference with normalizing flows”. In: International
conference on machine learning. PMLR. 2015,
pp. 1530–1538.

[9] Patrick Nadeem Ward, Ariella Smofsky, and Avishek
Joey Bose. “Improving exploration in soft-actor-critic
with normalizing flows policies”. In: arXiv preprint
arXiv:1906.02771 (2019).

[10] Sehoon Ha et al. “Learning to walk in the real
world with minimal human effort”. In: arXiv preprint
arXiv:2002.08550 (2020).

[11] Qisong Yang et al. “WCSAC: Worst-case soft actor
critic for safety-constrained reinforcement learning”.
In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 35. 12. 2021, pp. 10639–10646.

[12] Tu-Hoa Pham, Giovanni De Magistris, and Ryuki
Tachibana. “Optlayer-practical constrained optimiza-
tion for deep reinforcement learning in the real world”.
In: 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2018, pp. 6236–6243.

[13] Wen-Chi Yang et al. “Safe Reinforcement Learning
via Probabilistic Logic Shields”. In: Proceedings of
the Thirty-Second International Joint Conference on
Artificial Intelligence, IJCAI-23. Ed. by Edith Elkind.
Main Track. International Joint Conferences on Arti-
ficial Intelligence Organization, Aug. 2023, pp. 5739–
5749. DOI: 10.24963/ijcai.2023/637.

[14] Nathan Hunt et al. “Verifiably safe exploration for end-
to-end reinforcement learning”. In: Proceedings of
the 24th International Conference on Hybrid Systems:
Computation and Control. 2021, pp. 1–11.

[15] Po-Wei Chou, Daniel Maturana, and Sebastian
Scherer. “Improving stochastic policy gradients in
continuous control with deep reinforcement learning
using the beta distribution”. In: International confer-
ence on machine learning. PMLR. 2017, pp. 834–843.

[16] Finn Rietz et al. “Prioritized Soft Q-Decomposition
for Lexicographic Reinforcement Learning”. In: arXiv
preprint arXiv:2310.02360 (2023).

[17] Hengrui Zhang et al. “Lexicographic Actor-Critic
Deep Reinforcement Learning for Urban Autonomous
Driving”. In: IEEE Transactions on Vehicular Technol-
ogy (2022).

[18] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with
a stochastic actor”. In: International conference on
machine learning. PMLR. 2018, pp. 1861–1870.

[19] Tuomas Haarnoja et al. “Soft actor-critic al-
gorithms and applications”. In: arXiv preprint
arXiv:1812.05905 (2018).

[20] Brian D Ziebart et al. “Maximum entropy inverse
reinforcement learning.” In: Aaai. Vol. 8. Chicago, IL,
USA. 2008, pp. 1433–1438.

[21] Volodymyr Mnih et al. “Human-level control through
deep reinforcement learning”. In: nature 518.7540
(2015), pp. 529–533.

[22] Olivier Delalleau et al. “Discrete and continuous ac-
tion representation for practical rl in video games”. In:
arXiv preprint arXiv:1912.11077 (2019).

[23] Bogdan Mazoure et al. “Leveraging exploration in off-
policy algorithms via normalizing flows”. In: Confer-
ence on Robot Learning. PMLR. 2020, pp. 430–444.

[24] Janaka Chathuranga Brahmanage, Jiajing Ling, and
Akshat Kumar. “FlowPG: Action-constrained Policy
Gradient with Normalizing Flows”. In: arXiv preprint
arXiv:2402.05149 (2024).

[25] Michael Betancourt. “A conceptual introduction
to Hamiltonian Monte Carlo”. In: arXiv preprint
arXiv:1701.02434 (2017).

[26] Changyu Chen et al. “Generative Modelling of
Stochastic Actions with Arbitrary Constraints
in Reinforcement Learning”. In: arXiv preprint
arXiv:2311.15341 (2023).

[27] Emiel Hoogeboom et al. “Argmax flows and multino-
mial diffusion: Learning categorical distributions”. In:
Advances in Neural Information Processing Systems
34 (2021), pp. 12454–12465.

