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Abstract—Social navigation is a desirable capacity of every
mobile robot that operates in a human-populated environment.
A core challenge is the need to account for a vast number
of possible configurations of social spaces, interaction contexts,
and individual preferences. We assert that a mobile robot
should be able to explain its navigational choices to humans
in terms of social aspects of a situation. This way, humans can
challenge the robot’s decisions and give corrective feedback. In
our approach, explanations are first-class citizens employed both
as inputs and as outputs. As inputs, explanations enhance human
feedback (“Robot, you should not go this way, because . . . ”). Our
preliminary results indicate that allowing humans to formulate
explanations as feedback can speed up training. As outputs,
explanations make navigational decisions transparent to humans.
This way, humans can verify that the learnt model incorporates
the intended social norm. We show how explanation-generation
methods known from explainable AI (XAI) community can be
adopted for this task. We sketch the project in its early stage
and point out planned research directions.

Index Terms—robot navigation, explainability, human-in-the-
loop reinforcement learning

I. INTRODUCTION

As robots are expected to become a greater part of humans’
daily life in the future, there is a challenge to bridge the
gap between a robot’s actions and humans’ understanding of
what a robot is doing and how it makes its decisions. For
mobile robots, a crucial part of decision-making and planning
is concerned with navigational choices. Human-robot spatial
co-presence imposes known challenges on robot navigation.
Consequently, quite some work has already been done on robot
social navigation aimed at equipping navigation algorithms
with the capacity to account for social norms of spatial
behavior [1]–[3]. Social norms of spatial behavior are known
to be highly situation-dependent varying across a large number
of possible interactions and situations, e.g., [4]. Hence, there is
a chance that a robot is unaware of some particular social norm
and thus its spatial behavior is perceived as inappropriate by
humans. We want to address such situations by making robot
spatial behavior explainable. To this end, we apply methods
from explainable AI (e.g., [5]) to social navigation. This way,
a robot can explicate the reasons why it exhibits some spatial
behavior, e.g., it could explain its increasing the distance to
humans in terms of respect for their personal space. By giving
the explanation, the robot opens the opportunity for humans to
challenge the robot’s decision by giving corrective feedback,

e.g., stating that it is permissible to approach humans closer
for initiating a hand-over interaction. From this explanatory
feedback, the robot can learn about social norms and update its
policy. From the perspective of a robot engineer, explanations
can help to verify that a trained policy actually incorporates
the intended social norms.

In the following, we briefly outline our research agenda
which encompasses explanation-informed human-in-the-loop
reinforcement learning and explanation generation. We com-
ment on preliminary results and anticipated challenges.

II. EXPLANATION-INFORMED HUMAN-IN-THE-LOOP
REINFORCEMENT LEARNING

The handling of social preferences is a highly challenging
task due to its inherent complexity and vagueness. Therefore,
learning these preferences with reinforcement learning is a
natural approach. For example, Chen et al. [6] trained a social
scenario (passing of humans) with reinforcement learning and
a custom reward function. While it is feasible to provide a
custom reward function for simple tasks, capturing the full
complexity of social norms is infeasible. In fact, social robot
navigation is an instance of the general value-alignment prob-
lem, and it inherits all of its challenges, cf., [7]. Human-in-the-
loop reinforcement learning (HRL) is a possible solution. HRL
enables humans to directly influence and shape the learning
process of robots. Unlike writing reward functions for social
preferences, giving feedback is relatively natural for humans.

Our system employs methods from HRL, like TAMER [8],
to enable the human to interactively give feedback towards
a robot. For example, in figure 1d the robot wants to move
from the right to the left. Initially, its preferred route would
go straight through the field of vision (FV) of the trainer, who
is watching a game. The user then explains that this behavior
is undesired and that it should not move through his field
of vision. Internally, the robots learns with this explanatory
feedback which of the possible features is most responsible
for the feedback and updates its policy accordingly. In the
example, the influential feature could be either the field of
vision (FV) or the personal space (PS). The explanation
clarifies towards the FV, and thus the updated policy makes a
detour necessary (figure 1c).

Human feedback is costly. Therefore, it should be provided
through a convenient interface and used as efficiently as
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Fig. 1: Envisioned full lifecycle: 1a) A person is watching a soccer game, while a robot (R) is about to move through the
person’s cone of vision. The person gives the robot feedback that it should not move through the field of vision because he is
watching the game. 1b) This explanatory feedback is then used by the HRL algorithm to learn a suitable policy respecting the
person’s needs. Here, the robot updates its policy to account for the human (H), its personal space (PS), and the field of view
(FV). 1c) The robot then uses the updated policy to create a different path that respects the learnt social norm. 1d) Finally,
the trainer can inspect the learnt policy of the robot with the help of XAI methods like LIME. Here, it can be verified that
the robot’s behaviour is based on the field of vision (and not on the person itself or his personal space).

possible. Including explanations in the learning process can
mitigate both challenges. First, it has been shown that humans
rarely just want to provide binary feedback (see [9]), so the
inclusion of explanations should reduce frustrating experi-
ences. One research challenge is how to design interfaces
that allow humans to give explanatory feedback. Secondly, in
preliminary work (see [10]), we have shown that the inclusion
of counterfactual explanations speeds up the convergence of
the learning process. This in turn results in a more efficient
usage of human feedback. Further work will extend the system
by other types of explanations and by more dynamic interfaces
for their delivery.

III. EXPLAINABLE NAVIGATION

We explore the possibility to make robot navigation more
understandable to humans using Explainable Artificial Intel-
ligence (XAI) methods for explaining robot navigation algo-
rithms. Particularly, black-box XAI methods can be used to
explain decisions of both traditional and RL-based navigation
algorithms. Figure 1d exemplifies such an explanation of an
individual navigational decision of the robot. Using LIME
[5], a region in the local cost map is highlighted as being
most important for the navigational action (the local path) of
the robot. As expected, in the depicted situation, the field of
view by the person watching soccer explains the local path
(shown as red dots): Without the field of view, the robot would
choose a different local plan, viz., going straight (shown as
purple dots). The role of the explanation module is two-fold:
First, it allows humans to verify that the robot is making its
navigational choices for the right reasons. This may increase
understanding and trust. Such a scenario is outlined in Fig.
1. Second, the explanation module allows humans to detect
situations in which corrective feedback is necessary, because
some learnt social norm is not or incorrectly represented. Main
challenges include automating the generation of explanations
that are actually understood by humans, making explanation
methods functioning in real-time, and designing multi-modal

interfaces for communicating explanations to humans using
natural communication modalities.

CONCLUSION AND FUTURE WORK

We envision a system that learns social norms of spatial
behavior naturally with the help of explanations. Explanations
should be a crucial part of a system that is designed to work
in human spaces. Our first results show that it is possible to
include them as first-class citizens both as inputs for interactive
learning, and as outputs for enabling humans to understand
the robot behavior. Future work will expand on these results
and include more modes of explanations and focus on full
integration of all parts in a realistic benchmark.
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