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Abstract—In Reinforcement Learning, legible behavior re-
quires to maintain a policy that is easily discernable from a set
of other policies. While legibility has been thoroughly addressed
in Explainable Planning, little work exists in the Reinforcement
Learning literature. As we propose in this paper, injecting legible
behavior inside an agent’s policy doesn’t require to modify
components of its learning algorithm. Rather, the agent’s optimal
policy can be regularized for legibility, by evaluating how the
policy may produce observations that would make an observer
to infer an incorrect policy. In our formulation, the decision
boundary introduced by legibility impacts the states in which
the agent’s policy returns an action that has high likelihood also
in other policies. In these cases, a trade-off between such action,
and legible/sub-optimal action occurs.

Index Terms—Legibility, Reinforcement Learning, Q-
Learning, Bayesian Networks

I. INTRODUCTION

In Explainable AI, the interpretability of agent behavior has
been addressed in several variants such as explicability [1],
predictability [2] and legibility [3]. In general, interpretable
behavior requires to capture the expectations of the user about
the agent in the form of an expectations model. This model, of-
ten called a second-order theory of mind, describes the model
of the agent that has been internalized by its user, therefore
informing the agent on how it is being perceived, understood
or explained ie. how the user performs inferences on the agent.
Using a second-order theory of mind, explainability charges
the agent with the additional task of keeping its true model
(here PR) and the user’s expectations model (PH

R ) as similar
a possible. In this way, the inferences produced by PH

R lead
to the correct agent model PR.

In this paper we attempt to implement the legibility criteria
from the Explanable Planning literature using the reinforce-
ment learning framework. As we propose, injecting legible
behavior inside an agent’s policy (πR) doesn’t require to
modify components of the learning algorithm (here we use
tabular Q-learning with full observability). Rather, we propose
to evaluate how πR may produce state-action pairs that would
make the observer infer a different policy, to later find a trade-
off that minimizes those while remaining consistent to the
original policy.

Little work exists in modeling legible behavior in rein-
forcement learning. In [4] a method relying on the original
formulation of legibility is proposed. However, this method
is applicable only for goal-driven policies, thus excluding all
other types of policies. In addition, it requires to specify a
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Fig. 1. Agent model and second-order theory of mind as equivalent Bayesian
Networks. The networks model how agent and observer respectively select and
infer actions using the current state and a set of predefined policies, while the
function H measures the distance between these two processes.

distance measure between states that can be a difficult task
for arbitrary state-spaces.

Rather than relying of goal locations, we define a legibility
criteria that is directly applicable on policies. A regularization
method similar to ours is proposed in [5]. In their approach,
during training the agent’s policy is regularized towards an
arbitrary behavior through a divergence function between the
respective policies. We can see our method as a specific
application of this method, where the policy is regularized
towards the legible policy.

II. METHOD

We define a legible policy as:
An agent’s policy is legible if it is discernable from a set of

other policies.
We hypothesise an observer watching the agent and at-

tempting to understand which is its policy among a set of
candidates. The agent can be modeled to know it is being
observed by implementing a theory of mind. The theory of
mind can have many forms, for example, in [2] it is a label
predicting whether the (human) observer is understanding the
agent, while in [6] is a complete planning model. In general,
simple observer models are easier to maintain, while those
that are more complex allow to simulate with greater detail
the inferences of the observer.

In this paper we utilize a middle way where agent and
observer models are two equivalent Bayesian Networks (Fig-
ure 1). The networks are structurally the same, however, the
random variables Π, S and A can be differently distributed
in PR and PH

R . This setting avoids costly model alignments
while implementing uncertainty in the observer beliefs.



The agent model (left part of Figure 1) selects actions based
on the current state and policy. The right network instead
simulates an observer, and tells the agent how the observer
thinks it is selecting actions. When using Q-Learning, two
corresponding Q-value tables QR(a, π, s) and QH

R (a, π, s)
respectively define the probability distribution for selecting
actions, with PR(a|π, s) ∝ exp{QR(π, s, a)}, and for in-
ferring which action the agent will take with PH

R (a|π, s) =
α exp{QH

R (π, s, a)}.
In this setting, the agent has a fixed set of pre-trained

policies identified by the random variable Π = {π0, ..., πn}.
Notably, among these there is the policy it is currently pursuing
πR with PR(Π = πR) = 1. We model the observer to
not know which policy the agent is pursuing, thus having a
uniform prior of the policies: ∀i PH

R (πi) = k, k = 1
|Π| .

To be legible, the agent should select actions that commu-
nicate the observer its policy πR, or that avoid communicating
the others. This is obtained by selecting actions based on how
they reduce the distance between the probability distribution
over the agent policies, PR(Π), and the equivalent distribution
that the observer infers, given an observation in term of state-
action pair PH

R (Π|s, a). To implement this distance measure
we utilize cross-entropy:

H(PR(Π), PH
R (Π|s, a)) =

− logPH
R (πR|a, s) =

− logPH
R (a|πR, s) + logE[PH

R (a|π, s)]− logPH
R (πR) (1)

Assuming QR = QH
R for simplicity, we can define the

legible policy πl as:

πl(a|s) ∝ exp{QR(πR, s, a)− αH(PR(Π), PH
R (Π|s, a))}

(2)
where the right part of Eq. 2 regularizes the policy such that
the selected actions also minimize the distance between the
agent model and the model inferred by the observer.

Therefore, the decision boundary introduced by legibility
impacts the states in which πR(s) returns an action that has
high probability also in other policies. In these cases, a trade-
off between such action, and sub-obtimal/legible action occurs.

III. PROOF OF CONCEPT

We tested the proposed method on a simple gridworld
scenario. The grid is 7x7 and is without obstacles. There are
3 possible goals at the corners, for which we trained three
corresponding policies with Q-learning. The value of α was
set to 1. Figure 2 shows on the left column the learned optimal
deterministic policy. On the right column the corresponding
deterministic legible policies.

The learned policies have the behavior of going toward a
wall adjacent the goal, to then approach the goal by walking
along the wall. However, to be legible, it is important to
approach the right wall that disambiguates the goal location.
The legible policies systematically approach an unambiguous
wall. Notice also how for g1 the legible policy makes the agent
walk in the middle to avoid approaching the other goals.
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Fig. 2. Left: policies for the three goals (red dots) learned with Q-learning.
Right: legible policies. The legible policies avoid ambiguity of goal location
(of policy).

IV. CONCLUSION

In this abstract we introduce a framework that allows to
incorporate legibility criterias into a reinforcement learning
agent. We suggest that rather than modifying the learning
procedure of the agent we can wrap a priorly learned set of
policies by a pair of Bayesian Networks that model agent and
observer respectively. The coupled networks forms a mirror
setting of a second-order theory of mind, and have here the
function of increasing the discrimination between the true
agent policy and other candidates policies in the inferences
of the observer. Future work includes further experimental
validation of the proposed method.
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